

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Разработка новых материалов и задачи реакторного материаловедения

Дуб А.В., Рисованый В.Д. (АО Наука и инновации», г. Москва)

Научная сессия «Наука для атомной энергетики», г. Обнинск, 7.06.2019г.

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

- 1. Цель и основные задачи при разработке инновационных материалов
- 2. Трансформация подходов в развитии материалов
- 3. Новые требования к развитию и новые материаловедческие и технологические принципы
- 4. Реализация : конструкционные, топливные и конструкционные материалы
- 5. Принципы управления структурой

6. Формирование свойств материалов - многоуровневый подход: Мезо-уровень - включения, зерно

- 7. Многоуровневое моделирование
- 8. Методы ускоренных испытаний
- 9. Новые материалы и цифровые технологии:

10. Основные задачи по разработке новых тематического плана НИОКР

за изделия

скорпорации «Росатом»

Заключение

1. Цель и основные задачи при разработке инновационных материалов

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Цель - обеспечение лидерства в области создания новых материалов и нормативной базы/сертификации для обеспечения безопасности и экономической эффективности эксплуатации ядерно-энергетических установок, построение двухкомпонентной ядерной энергетики на основе управления эволюцией микро- и наноструктуры материалов

Основные задачи:

-оценка и разработка критериев разрушения/ эволюции свойств

-комплементарное применение многоуровневого моделирования, проведение ускоренных радиационных испытаний свойств материалов и изделий в обоснование конструкторских решений

-проведение исследований влияния параметров сфокусированной энергии на характеристики формирующихся материалов. Порошки. Композиты. Модифицирование поверхности

- разработка перспективной нормативной базы и стандартов, методов контроля для внедрения новых методов конструирования и производственных технологий.

3. Реализация : Конструкционные материалы

Эволюция корпусной стали. ВКУ; ВВЭР-С. ВВЭР-СКД

Наплавные последовательные процессы (ЭШП и др.)

3.Формирование свойств материалов многоуровневый подход: Микро-нано, фазовые переходы

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Масштаб уровней структуры

№ п/п	Название Масштаб			
	МИКРОУРОВЕНЬ,	≤ L ₀		
1	Вакансия, атом	2–3·10 ⁻¹⁰ м		
2	Кластеры 2–5·10 ⁻⁹ м			
3	Дислокация 10 ⁻⁸ м			
МЕЗОУРОВЕНЬ				
4	Блок мозаики, суб-зерно,	10 ⁻⁷ —10 ⁻⁶ м		
	сульфиды, НВ			
УРОВЕНЬ ЗЕРНА, L _s				
5	Зерно. Дендрит. Сульфиды, НВ. 10 ⁻⁵ – 10 ⁻⁴ м			
MAКРОУРОВЕНЬ, >L _s				
6	Группа зерен	2 - 5.10-4 м		
7	Участок образца	10 ⁻³ м		
8	Образец в целом	Более 10 ⁻³ – 10 ⁻² м		

Формирование первичной кристаллической структуры 2.3

P, Si, C, S, O, H, Sb, As, Bi, Sn, N, Cu, Al, Mn

3.Предлагаемые материалы для реакторов IV-го поколения

(A Technology Roadmap for Generation IV Nuclear Energy System//Issed by the US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, GIF-002-00, December 2002 * - предложения авторов)

POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Dogutton	Теплоноситель	Максимальная температура, °С	Материалы элементов активных зон		
геактор			Топливо	Оболочка	Поглотитель
GFR быстрый	гелий	850	(U,Pu)C/SiC композитное керамическое, топливные частицы с керамическим покрытием	керамика (?)	
LFR быстрый	свинец или свинец- висмут	800	U-Pu (U,Pu)N	ферритно- мартенситная сталь (912% Cr) керамика	высокотемпературная керамика (карбиды или бориды металлов) на основе бора с содержанием изотопа ¹⁰ В до 95% - ¹⁰ В _x С,
SFR быстрый	натрий	520 (550)	U-Pu-Zr U-Pu-Zr + актиниды (U,Pu)O ₂ (U,Pu)O ₂ +актиниды	ферритно- мартенситная сталь (912% Cr) ODS сплавы ванадия с покрытиями*	W ¹⁰ B ₂ , Hf ¹⁰ B ₂ * HfHx Dy_2O_3 ·HfO ₂ , Dy_2O_3 ·HfO ₂ +B ₄ C*
SCWR быстрый (тепловой)	вода при сверхкритичес- ких параметрах	550 (Р=25 МПа)	(U,Pu)O ₂ Дисперсионное (UO ₂)	ферритно- мартенситная сталь (912% Сг) Fe Ni Cr Ti ODS Inconel 690,625,718	
МСК надтепловой (быстрый)	соляной расплав	700	Соль	-	
VHTR тепловой	гелий	1000	TRISO UOC в графитовой матрице с покрытием ZrC	графит с ZrC – покрытием ¹¹ B ¹⁵ N * ¹¹ B ¹⁵ N + ¹¹ B ₄ C* 7	карбид бора с пироуглеродной пропиткой *

3. Требуемые температуры эксплуатации и повреждающие дозы в ЯЭУ различного типа

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

S. Zinkle, SMINS 2007, Karlsruhe

All Gen IV and fusion concepts pose severe material challenges

8

3.Разработка композиционных материалов типа SiC-SiC (ONL, США, 2014г)

POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

PEAKTOP	Использование	Усло	овия эксплуа	тации
ИТЭР	Бланкет	Не	400-900°C	> 50сна
HTGR, VHTR тепловой	Конструкционные элементы	Не	600-1100°C	> 40сна
LWR (PWR,BWR) тепловой	Оболочки ТВЭЛ, Решетки, Каналы	Вода	300-500ºC	> 50сна
FHR, AHTR тепловой	Конструкционные элементы	Соли	700ºC	> 10сна
SFR быстрый	Оболочки ТВЭЛ, Конструкционные элементы	Na	500-700°C	> 100сна
GFR быстрый	Оболочки ТВЭЛ, Конструкционные элементы	Не	700-1200°C	> 100сна

3.Зависимость выхода газа от выгорания в металлическом топливе*

POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

* R.Pahl, R.Wisher, M.Billone et al.Steady-state irradiation testing of U-Pu-Zr fuel to 18 at.% burnup. Proc.of the 1990 Int.Fast Xeactor Safety Meeting, v.4, p.129

3.Типичная структура U-19Pu-10Zr после реакторного облучения

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

3. Распухание нитридного топлива

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

UN, макс температура1675 К, потность 93%, ○ UN, макс эмпература 1460 К, потность 95% - иссл. реакторы ША, ◊ UN, макс температура 173 К, плотность 84-94% - БР-10, асчет: 1675 К - ▲, at 1460 К - •, at 173 К – •.

3.Нитридное топливо (UPu)N в BORA-BORA

POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

Поперечные сечения топливных таблеток после облучения

Топливо	UPu _{0.6} N	UPu _{0.45} N
Скорость распухания % / %т.ат.	(0,48–0,68) ±0,04%	(0,64–1,11) ±0,04%
Выход ГПД, %	19	19
Макс глубина коррозии оболочки, мк	нет	15 (в верхнем сечении АЗ)

Нет заметных изменений структуры топлива, кроме мелкой внутри-зеренной пористости и коагуляции зерно-граничных пор (максимальная температура топлива 1750 °C)

Не выявлено диссоциации нитрида при облучении в течение 2-х этапов ни по состоянию микроструктуры, ни по изменению содержания азота в газовой фазе под оболочкой твэлов, ни по каким-либо иным признакам.

З.Гафнат диспрозия (nDy₂O₃⋅mHfO₂) для реакторов на тепловых нейтронах

POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

- повысить физическую эффективность поглотителя
- получить флюоритную кристаллическую структуру наиболее стойкую к реакторному облучению
- увеличить плотность таблеток с 6,2 г/см³ до 8,0 г/см³
- улучшить теплофизические характеристики

3.Поглощающие материалы для БН- реакторов

POCATOM

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

G

4.Формирование свойств материалов - многоуровневый подход: Мезо-уровень - включения, зерно

5. Многоуровневое моделирование

дефектности

5. Физическое моделирование реакторных материалов

5. Материалы под облучением

«Мгновенные снимки» МД–генерации вакансий (красные точки) и междоузельных атомов (зеленые точки) в месте рассеяния нейтрона с энергией ~0.7 МэВ на железе (ОЦК) и меди (ГЦК) при максимуме точечных дефектов (а), после частичной их рекомбинации в «температурном пике» (б) и после охлаждения (в)

Графическая модель межфазной границы как центра притяжения процессов, стимулируемых облучением, которые могут изменять структуру и состав материала, а следовательно, и его свойства

Моделированием на суперкомпьютере (LLNL, 10 тыс. параллельных процессоров) установлено, что упрочнение (закалка) металла происходит, когда дислокации связываются в узлы по четыре на каждый узел

Это подтверждается экспериментом, что открывает новые технологические возможности для упрочнения конструкционных материалов.

6. Методы ускоренных испытаний

Общий вид дискового образца для ионного облучения (D=12 мм, t=2мм)

Вырезка темплета из облученной поверхности методом сфокусированного ионного пучка (FIB)

Неравномерность пористости при облучении стали

Ускоритель ионов TANDETRON в АО «ГНЦ РФ-ФЭИ»

7. Новые материалы и цифровые технологии: свойства изделия

8. Основные задачи по разработке новых неядерных материалов в рамках Единого отраслевого тематического плана НИОКР Госкорпорации «Росатом»

•	Водо-водяные энергетические реакторы Унификация стандартов хрупкой прочности свар. швов корпуса реактора Нац. стандарты стойкости к межкристаллитной коррозии нержавеющих сталей Цифровое управление качеством Корпусная сталь и ВКУ ВВЭР С /СКД Методы контроля Сварочные материалы	Реакторные установки со свинцовым теплоносителем • Обоснование ресурса до 30 и 60 лет • Методы контроля • Сварочные материалы	 Жидко-солевые реакторы Состав топливной соли Конструкционные материалы топливного контура Конструкционные материалы установки переработки соли Расчёты условий работы Методы контроля Сварочные материалы
•	Изделия для РАО и ОЯТ Многослойные материалы Методы контроля Сварочные материалы	 Атомные станции малой мощности Новая сталь повышенной прочности Обоснование срока службы материалов на 30 и 60 лет Методы контроля и сварочные мат-лы 	 Реакторы на быстрых нейтронах БН-1200 Увеличение срока службы парогенератора до 60 лет Методы контроля Сварочные материалы
	Конструкционные материалы топлива	Аддитивные технологии	Углеродные материалы и композиты
•	Критерии разрушения и прочности Радиационно-стойкие стали Стали упрочн. дисперсными оксидами Композиты SiC/SiC Материалы тепловыделяющих элементов легководных реакторов Поглощающие материалы Методы контроля и сварочные мат-лы	 Виртуальный принтер 3D-оборудования и технологий для печати металлических изделий Сложнопрофильные и крупногабаритные изделия атомной энергетики Механизмы управления кристаллизацией 	 Интеллектуальные композиты Функциональные материалы Радиационностойкие С-, С-С, С-Si материалы Биосовместимые углеродные материалы

8. ЕОТП. Материалы и технологии

8. Распределение проектов по головным организациям и соисполнителям (2019 г)

Спасибо За внимание